In this paper, we study the Nash dynamics of strategic interplays of n buyers
in a matching market setup by a seller, the market maker. Taking the standard
market equilibrium approach, upon receiving submitted bid vectors from the
buyers, the market maker will decide on a price vector to clear the market in
such a way that each buyer is allocated an item for which he desires the most
(a.k.a., a market equilibrium solution). While such equilibrium outcomes are
not unique, the market maker chooses one (maxeq) that optimizes its own
objective --- revenue maximization. The buyers in turn change bids to their
best interests in order to obtain higher utilities in the next round's market
equilibrium solution.
This is an (n+1)-person game where buyers place strategic bids to gain the
most from the market maker's equilibrium mechanism. The incentives of buyers in
deciding their bids and the market maker's choice of using the maxeq mechanism
create a wave of Nash dynamics involved in the market. We characterize Nash
equilibria in the dynamics in terms of the relationship between maxeq and mineq
(i.e., minimum revenue equilibrium), and develop convergence results for Nash
dynamics from the maxeq policy to a mineq solution, resulting an outcome
equivalent to the truthful VCG mechanism.
Our results imply revenue equivalence between maxeq and mineq, and address
the question that why short-term revenue maximization is a poor long run
strategy, in a deterministic and dynamic setting