We present a density functional theory study of low density bromination of
graphene and graphite, finding significantly different behaviour in these two
materials. On graphene we find a new Br2 form where the molecule sits
perpendicular to the graphene sheet with an extremely strong molecular dipole.
The resultant Br+-Br- has an empty pz-orbital located in the graphene
electronic pi-cloud. Bromination opens a small (86meV) band gap and strongly
dopes the graphene. In contrast, in graphite we find Br2 is most stable
parallel to the carbon layers with a slightly weaker associated charge transfer
and no molecular dipole. We identify a minimum stable Br2 concentration in
graphite, finding low density bromination to be endothermic. Graphene may be a
useful substrate for stabilising normally unstable transient molecular states