research

On a selection principle for multivalued semiclassical flows

Abstract

We study the semiclassical behaviour of solutions of a Schr ̈odinger equation with a scalar po- tential displaying a conical singularity. When a pure state interacts strongly with the singularity of the flow, there are several possible classical evolutions, and it is not known whether the semiclassical limit cor- responds to one of them. Based on recent results, we propose that one of the classical evolutions captures the semiclassical dynamics; moreover, we propose a selection principle for the straightforward calculation of the regularized semiclassical asymptotics. We proceed to investigate numerically the validity of the proposed scheme, by employing a solver based on a posteriori error control for the Schr ̈odinger equation. Thus, for the problems we study, we generate rigorous upper bounds for the error in our asymptotic approximation. For 1-dimensional problems without interference, we obtain compelling agreement between the regularized asymptotics and the full solution. In problems with interference, there is a quantum effect that seems to survive in the classical limit. We discuss the scope of applicability of the proposed regularization approach, and formulate a precise conjecture

    Similar works