research

Non Singular Origin of the Universe and its Present Vacuum Energy Density

Abstract

We consider a non singular origin for the Universe starting from an Einstein static Universe, the so called "emergent universe" scenario, in the framework of a theory which uses two volume elements βˆ’gd4x\sqrt{-{g}}d^{4}x and Ξ¦d4x\Phi d^{4}x, where Ξ¦\Phi is a metric independent density, used as an additional measure of integration. Also curvature, curvature square terms and for scale invariance a dilaton field Ο•\phi are considered in the action. The first order formalism is applied. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of scale invariance (S.I.). After S.S.B. of S.I., it is found that a non trivial potential for the dilaton is generated. In the Einstein frame we also add a cosmological term that parametrizes the zero point fluctuations. The resulting effective potential for the dilaton contains two flat regions, for Ο•β†’βˆž\phi \rightarrow \infty relevant for the non singular origin of the Universe, followed by an inflationary phase and Ο•β†’βˆ’βˆž\phi \rightarrow -\infty, describing our present Universe. The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emergent universe solutions, which exists for a parameter range of values of the vacuum energy in Ο•β†’βˆ’βˆž\phi \rightarrow -\infty, which must be positive but not very big, avoiding the extreme fine tuning required to keep the vacuum energy density of the present universe small. Zero vacuum energy density for the present universe defines the threshold for the creation of the universe.Comment: 28 pages, short version of this paper awarded an honorable mention by the Gravity Research Foundation, 2011, accepted for publication in International Journal of Modern Physics

    Similar works

    Full text

    thumbnail-image

    Available Versions