research

Mott physics in 2p2p electron dioxygenyl magnet : O2_{2}MMF6_{6} (MM=Sb, Pt)

Abstract

We have investigated electronic structures and magnetic properties of O2_{2}MMF6_{6} (MM=Sb, Pt), which are composed of two building blocks of strongly correlated electrons: O2+_{2}^{+} dioxygenyls and MMF6βˆ’_{6}^{-} octahedra, by employing the first-principles electronic structure band method. For O2_{2}SbF6_{6}, as a reference system of O2_{2}PtF6_{6}, we have shown that the Coulomb correlation of O(2pp) electrons drives the Mott insulating state. For O2_{2}PtF6_{6}, we have demonstrated that the Mott insulating state is induced by the combined effects of the Coulomb correlation of O(2pp) and Pt(5dd) electrons and the spin-orbit (SO) interaction of Pt(5dd) states. The role of the SO interaction in forming the Mott insulating state of O2_{2}PtF6_{6} is similar to the case of Sr2_{2}IrO4_{4} that is a prototype of a SO induced Mott system with Jeff=1/2_{eff}=1/2.Comment: 5 pages, 6 figure

    Similar works