Volterra and polynomial regression models play a major role in nonlinear
system identification and inference tasks. Exciting applications ranging from
neuroscience to genome-wide association analysis build on these models with the
additional requirement of parsimony. This requirement has high interpretative
value, but unfortunately cannot be met by least-squares based or kernel
regression methods. To this end, compressed sampling (CS) approaches, already
successful in linear regression settings, can offer a viable alternative. The
viability of CS for sparse Volterra and polynomial models is the core theme of
this work. A common sparse regression task is initially posed for the two
models. Building on (weighted) Lasso-based schemes, an adaptive RLS-type
algorithm is developed for sparse polynomial regressions. The identifiability
of polynomial models is critically challenged by dimensionality. However,
following the CS principle, when these models are sparse, they could be
recovered by far fewer measurements. To quantify the sufficient number of
measurements for a given level of sparsity, restricted isometry properties
(RIP) are investigated in commonly met polynomial regression settings,
generalizing known results for their linear counterparts. The merits of the
novel (weighted) adaptive CS algorithms to sparse polynomial modeling are
verified through synthetic as well as real data tests for genotype-phenotype
analysis.Comment: 20 pages, to appear in IEEE Trans. on Signal Processin