research

Top quark forward-backward asymmetry from the 3313-3-1 model

Abstract

The forward-backward asymmetry AFBA_{FB} in top quark pair production, measured at the Tevatron, is probably related to the contribution of new particles. The Tevatron result is more than a 2σ2\sigma deviation from the standard model prediction and motivates the application of alternative models introducing new states. However, as the standard model predictions for the total cross section σtt\sigma_{tt} and invariant mass distribution MttM_{tt} for this process are in good agreement with experiments, any alternative model must reproduce these predictions. These models can be placed into two categories: One introduces the s-channel exchange of new vector bosons with chiral couplings to the light quarks and to the top quark and another relies on the t-channel exchange of particles with large flavor-violating couplings in the quark sector. In this work we employ a model which introduces both s- and t-channel nonstandard contributions for the top quark pair production in proton antiproton collisions. We use the minimal version of the SU(3)CSU(3)LU(1)XSU(3)_C \otimes SU(3)_L \otimes U (1)_X model (3-3-1 model) that predicts the existence of a new neutral gauge boson, called ZZ^\prime. This gauge boson has both flavor-changing couplings to up and top quarks and chiral coupling to the light quarks and to the top quark. This very peculiar model coupling can correct the AFBA_{FB} for top quark pair production for two ranges of ZZ^\prime mass while leading to cross section and invariant mass distribution quite similar to the standard model ones. This result reinforces the role of the 3-3-1 model for any new physics effect.Comment: 12 pages, 4 figures, 2 table

    Similar works

    Full text

    thumbnail-image

    Available Versions