The anomalous X-ray pulsar 4U 0142+61 was observed with Suzaku on 2007 August
15 for a net exposure of -100 ks, and was detected in a 0.4 to ~70 keV energy
band. The intrinsic pulse period was determined as 8.68878 \pm 0.00005 s, in
agreement with an extrapolation from previous measurements. The broadband
Suzaku spectra enabled a first simultaneous and accurate measurement of the
soft and hard components of this object by a single satellite. The former can
be reproduced by two blackbodies, or slightly better by a resonant cyclotron
scattering model. The hard component can be approximated by a power-law of
photon index \Gamma h ~0.9 when the soft component is represented by the
resonant cyclotron scattering model, and its high-energy cutoff is constrained
as >180 keV. Assuming an isotropic emission at a distance of 3.6 kpc, the
unabsorbed 1-10 keV and 10-70 keV luminosities of the soft and hard components
are calculated as 2.8e+35 erg s^{-1} and 6.8e+34 erg s^{-1}, respectively.
Their sum becomes ~10^3 times as large as the estimated spin-down luminosity.
On a time scale of 30 ks, the hard component exhibited evidence of variations
either in its normalization or pulse shape.Comment: 24 pages, 8 figures, accepted for publication in Publications of the
Astronomical Society of Japa