Multipartite entanglement of fermionic systems in noninertial frames


The bipartite and tripartite entanglement of a 3-qubit fermionic system when one or two subsystems accelerated are investigated. It is shown that all the one-tangles decrease as the acceleration increases. However, unlike the scalar case, here one-tangles NCI(ABI){\cal N}_{C_I(AB_I)} and NCI(AB){\cal N}_{C_I(AB)} never reduce to zero for any acceleration. It is found that the system has only tripartite entanglement when either one or two subsystems accelerated, which means that the acceleration doesn't generate bipartite entanglement and doesn't effect the entanglement structure of the quantum states in this system. It is of interest to note that the Ο€\pi-tangle of the two-observers-accelerated case decreases much quicker than that of the one-observer-accelerated case and it reduces to a non-zero minimum in the infinite acceleration limit. Thus we argue that the qutrit systems are better than qubit systems to perform quantum information processing tasks in noninertial systems.Comment: 12 pages, 3 figure

    Similar works

    Full text


    Available Versions