Aims: The effects of rotation and magnetic fields on the surface abundances
of solar-type stars are studied in order to investigate whether the reported
difference in lithium content of exoplanet-host stars can be related to their
rotational history. Moreover, the asteroseismic properties predicted for stars
with and without exoplanets are compared to determine how such a scenario,
which relates the lithium abundances and the rotational history of the star,
can be further challenged by observations of solar-like oscillations. Methods:
Based on observations of rotational periods of solar-type stars, slow rotators
on the zero age main sequence (ZAMS) are modelled with a comprehensive
treatment of only the shellular rotation, while fast rotators are modelled
including both shellular rotation and magnetic fields. Assuming a possible link
between low rotation rates on the ZAMS and the presence of planets as a result
of a longer disc-locking phase during the pre-main sequence (PMS), we compare
the surface abundances and asteroseismic properties of slow and fast rotating
models, which correspond to exoplanet-host stars and stars without detected
planets, respectively. Results: We confirm previous suggestions that the
difference in the lithium content of stars with and without detected planets
can be related to their different rotational history. The larger efficiency of
rotational mixing predicted in exoplanet-host stars explains their lithium
depletion and also leads to changes in the structure and chemical composition
of the central stellar layers. Asteroseismic observations can reveal these
changes and can help us distinguish between different possible explanations for
the lower lithium content of exoplanet-host stars.Comment: 4 pages, 4 figures, A&A lette