The present study deals with a spatially homogeneous and anisotropic
Bianchi-II cosmological model representing massive strings. The energy-momentum
tensor, as formulated by Letelier (1983), has been used to construct a massive
string cosmological model for which the expansion scalar is proportional to one
of the components of shear tensor. The Einstein's field equations have been
solved by applying a variation law for generalized Hubble's parameter that
yields a constant value of deceleration parameter in Bianchi-II space-time. A
comparative study of accelerating and decelerating modes of the evolution of
universe has been carried out in the presence of string scenario. The study
reveals that massive strings dominate the early Universe. The strings
eventually disappear from the Universe for sufficiently large times, which is
in agreement with the current astronomical observations.Comment: 11 pages, 6 figures (To appear in Mod. Phys. Lett. A) In this
version, the cosmic string has been directed along z-direction and the
resultant field equations have been solved exactl