research

Interacting Markov chain Monte Carlo methods for solving nonlinear measure-valued equations

Abstract

We present a new class of interacting Markov chain Monte Carlo algorithms for solving numerically discrete-time measure-valued equations. The associated stochastic processes belong to the class of self-interacting Markov chains. In contrast to traditional Markov chains, their time evolutions depend on the occupation measure of their past values. This general methodology allows us to provide a natural way to sample from a sequence of target probability measures of increasing complexity. We develop an original theoretical analysis to analyze the behavior of these iterative algorithms which relies on measure-valued processes and semigroup techniques. We establish a variety of convergence results including exponential estimates and a uniform convergence theorem with respect to the number of target distributions. We also illustrate these algorithms in the context of Feynman-Kac distribution flows.Comment: Published in at http://dx.doi.org/10.1214/09-AAP628 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works