Formation of Hydrogenated Graphene Nanoripples by Strain Engineering and Directed Surface Self-assembly


We propose a new class of semiconducting graphene-based nanostructures: hydrogenated graphene nanoripples (HGNRs), based on continuum-mechanics analysis and first principles calculations. They are formed via a two-step combinatorial approach: first by strain engineered pattern formation of graphene nanoripples, followed by a curvature-directed self-assembly of H adsorption. It offers a high level of control of the structure and morphology of the HGNRs, and hence their band gaps which share common features with graphene nanoribbons. A cycle of H adsorption/desorption at/from the same surface locations completes a reversible metal-semiconductor-metal transition with the same band gap.Comment: 11 pages, 5 figure

    Similar works

    Full text


    Available Versions