We study the capacity of secret-key agreement over a wiretap channel with
state parameters. The transmitter communicates to the legitimate receiver and
the eavesdropper over a discrete memoryless wiretap channel with a memoryless
state sequence. The transmitter and the legitimate receiver generate a shared
secret key, that remains secret from the eavesdropper. No public discussion
channel is available. The state sequence is known noncausally to the
transmitter. We derive lower and upper bounds on the secret-key capacity. The
lower bound involves constructing a common state reconstruction sequence at the
legitimate terminals and binning the set of reconstruction sequences to obtain
the secret-key. For the special case of Gaussian channels with additive
interference (secret-keys from dirty paper channel) our bounds differ by 0.5
bit/symbol and coincide in the high signal-to-noise-ratio and high
interference-to-noise-ratio regimes. For the case when the legitimate receiver
is also revealed the state sequence, we establish that our lower bound achieves
the the secret-key capacity. In addition, for this special case, we also
propose another scheme that attains the capacity and requires only causal side
information at the transmitter and the receiver.Comment: 10 Pages, Submitted to IEEE Transactions on Information Forensics and
Security, Special Issue on Using the Physical Layer for Securing the Next
Generation of Communication System