Systems of self-propelled particles are known for their tendency to aggregate
and to display swarm behavior. We investigate two model systems, self-propelled
rods interacting via volume exclusion, and sinusoidally-beating flagella
embedded in a fluid with hydrodynamic interactions. In the flagella system,
beating frequencies are Gaussian distributed with a non-zero average. These
systems are studied by Brownian-dynamics simulations and by mesoscale
hydrodynamics simulations, respectively. The clustering behavior is analyzed as
the particle density and the environmental or internal noise are varied. By
distinguishing three types of cluster-size probability density functions, we
obtain a phase diagram of different swarm behaviors. The properties of
clusters, such as their configuration, lifetime and average size are analyzed.
We find that the swarm behavior of the two systems, characterized by several
effective power laws, is very similar. However, a more careful analysis reveals
several differences. Clusters of self-propelled rods form due to partially
blocked forward motion, and are therefore typically wedge-shaped. At higher rod
density and low noise, a giant mobile cluster appears, in which most rods are
mostly oriented towards the center. In contrast, flagella become
hydrodynamically synchronized and attract each other; their clusters are
therefore more elongated. Furthermore, the lifetime of flagella clusters decays
more quickly with cluster size than of rod clusters