research

Enhanced Pairing in the "Checkerboard" Hubbard Ladder

Abstract

We study signatures of superconductivity in a 2--leg "checkerboard" Hubbard ladder model, defined as a one--dimensional (period 2) array of square plaquettes with an intra-plaquette hopping tt and inter-plaquette hopping t′t', using the density matrix renormalization group method. The highest pairing scale (characterized by the spin gap or the pair binding energy, extrapolated to the thermodynamic limit) is found for doping levels close to half filling, U≈6tU\approx 6t and t′/t≈0.6t'/t \approx 0.6. Other forms of modulated hopping parameters, with periods of either 1 or 3 lattice constants, are also found to enhance pairing relative to the uniform two--leg ladder, although to a lesser degree. A calculation of the phase stiffness of the ladder reveals that in the regime with the strongest pairing, the energy scale associated with phase ordering is comparable to the pairing scale.Comment: 9 pages, 9 figures; Journal reference adde

    Similar works

    Full text

    thumbnail-image

    Available Versions