Starting from the fact that complete Accepting Hybrid Networks of
Evolutionary Processors allow much communication between the nodes and are far
from network structures used in practice, we propose in this paper three
network topologies that restrict the communication: star networks, ring
networks, and grid networks. We show that ring-AHNEPs can simulate 2-tag
systems, thus we deduce the existence of a universal ring-AHNEP. For star
networks or grid networks, we show a more general result; that is, each
recursively enumerable language can be accepted efficiently by a star- or
grid-AHNEP. We also present bounds for the size of these star and grid
networks. As a consequence we get that each recursively enumerable can be
accepted by networks with at most 13 communication channels and by networks
where each node communicates with at most three other nodes.Comment: In Proceedings DCFS 2010, arXiv:1008.127