We present three generalisations of Kernel Principal Components Analysis
(KPCA) which incorporate knowledge of the class labels of a subset of the data
points. The first, MV-KPCA, penalises within class variances similar to Fisher
discriminant analysis. The second, LSKPCA is a hybrid of least squares
regression and kernel PCA. The final LR-KPCA is an iteratively reweighted
version of the previous which achieves a sigmoid loss function on the labeled
points. We provide a theoretical risk bound as well as illustrative experiments
on real and toy data sets