Waves observed in the photosphere and chromosphere of sunspots show complex
dynamics and spatial patterns. The interpretation of high-resolution sunspot
wave observations requires modeling of three-dimensional non-linear wave
propagation and mode transformation in the sunspot upper layers in realistic
spot model atmospheres. Here we present the first results of such modeling. We
have developed a 3D non-linear numerical code specially designed to calculate
the response of magnetic structures in equilibrium to an arbitrary
perturbation. The code solves the 3D nonlinear MHD equations for perturbations;
it is stabilized by hyper-diffusivity terms and is fully parallelized. The
robustness of the code is demonstrated by a number of standard tests. We
analyze several simulations of a sunspot perturbed by pulses of different
periods at subphotospheric level, from short periods, introduced for academic
purposes, to longer and realistic periods of three and five minutes. We present
a detailed description of the three-dimensional mode transformation in a
non-trivial sunspot-like magnetic field configuration, including the conversion
between fast and slow magneto-acoustic waves and the Alfv\'en wave, by
calculation of the wave energy fluxes. Our main findings are the following: (1)
the conversion from acoustic to the Alfv\'en mode is only observed if the the
driving pulse is located out of the sunspot axis, but this conversion is
energetically inefficient; (2) as a consequence of the cut-off effects and
refraction of the fast magneto-acoustic mode, the energy of the evanescent
waves with periods around 5 minutes remains almost completely below the level
beta=1; (3) waves with frequencies above the cut-off propagate field-aligned to
the chromosphere and their power becomes dominating over that of evanescent
5-minute oscillations, in agreement with observations