Cost-effective visual odometry system for vehicle motion control in agricultural environments


In precision agriculture, innovative cost-effective technologies and new improved solutions, aimed at making operations and processes more reliable, robust and economically viable, are still needed. In this context, robotics and automation play a crucial role, with particular reference to unmanned vehicles for crop monitoring and site-specific operations. However, unstructured and irregular working environments, such as agricultural scenarios, require specific solutions regarding positioning and motion control of autonomous vehicles. In this paper, a reliable and cost-effective monocular visual odometry system, properly calibrated for the localisation and navigation of tracked vehicles on agricultural terrains, is presented. The main contribution of this work is the design and implementation of an enhanced image processing algorithm, based on the cross-correlation approach. It was specifically developed to use a simplified hardware and a low complexity mechanical system, without compromising performance. By providing sub-pixel results, the presented algorithm allows to exploit low-resolution images, thus obtaining high accuracy in motion estimation with short computing time. The results, in terms of odometry accuracy and processing time, achieved during the in-field experimentation campaign on several terrains proved the effectiveness of the proposed method and its fitness for automatic control solutions in precision agriculture applications

    Similar works