research

Gr\"obner-Shirshov bases for LL-algebras

Abstract

In this paper, we firstly establish Composition-Diamond lemma for Ω\Omega-algebras. We give a Gr\"{o}bner-Shirshov basis of the free LL-algebra as a quotient algebra of a free Ω\Omega-algebra, and then the normal form of the free LL-algebra is obtained. We secondly establish Composition-Diamond lemma for LL-algebras. As applications, we give Gr\"{o}bner-Shirshov bases of the free dialgebra and the free product of two LL-algebras, and then we show four embedding theorems of LL-algebras: 1) Every countably generated LL-algebra can be embedded into a two-generated LL-algebra. 2) Every LL-algebra can be embedded into a simple LL-algebra. 3) Every countably generated LL-algebra over a countable field can be embedded into a simple two-generated LL-algebra. 4) Three arbitrary LL-algebras AA, BB, CC over a field kk can be embedded into a simple LL-algebra generated by BB and CC if kdim(BC)|k|\leq \dim(B*C) and ABC|A|\leq|B*C|, where BCB*C is the free product of BB and CC.Comment: 22 page

    Similar works

    Full text

    thumbnail-image

    Available Versions