research

Long-range percolation on the hierarchical lattice

Abstract

We study long-range percolation on the hierarchical lattice of order NN, where any edge of length kk is present with probability pk=1exp(βkα)p_k=1-\exp(-\beta^{-k} \alpha), independently of all other edges. For fixed β\beta, we show that the critical value αc(β)\alpha_c(\beta) is non-trivial if and only if N<β<N2N < \beta < N^2. Furthermore, we show uniqueness of the infinite component and continuity of the percolation probability and of αc(β)\alpha_c(\beta) as a function of β\beta. This means that the phase diagram of this model is well understood.Comment: 24 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/10/2017