CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
research
RTL-aware dataflow-driven macro placement
Authors
Jordi Cortadella
Marc Galcerán Oms
+3 more
Ferran Martorell Cid
Jordi Petit Silvestre
Alexandre Vidal Obiols
Publication date
1 January 2019
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.When RTL designers define the hierarchy of a system, they exploit their knowledge about the conceptual abstractions devised during the design and the functional interactions between the logical components. This valuable information is often lost during physical synthesis. This paper proposes a novel multi-level approach for the macro placement problem of complex designs dominated by macro blocks, typically memories. By taking advantage of the hierarchy tree, the netlist is divided into blocks containing macros and standard cells, and their dataflow affinity is inferred considering the latency and flow width of their interaction. The layout is represented using slicing structures and generated with a top-down algorithm capable of handling blocks with both hard and soft components, aimed at wirelength minimization. These techniques have been applied to a set of large industrial circuits and compared against both a commercial floorplanner and handcrafted floorplans by expert back-end engineers. The proposed approach outperforms the commercial tool and produces solutions with similar quality to the best handcrafted floorplans. Therefore, the generated floorplans provide an excellent starting point for the physical design iterations and contribute to reduce turn-around time significantly.Peer ReviewedPostprint (author's final draft
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
UPCommons
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/169...
Last time updated on 17/04/2020
UPCommons. Portal del coneixement obert de la UPC
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/169...
Last time updated on 18/10/2019
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 10/08/2021