A common belief in high-dimensional data analysis is that data are
concentrated on a low-dimensional manifold. This motivates simultaneous
dimension reduction and regression on manifolds. We provide an algorithm for
learning gradients on manifolds for dimension reduction for high-dimensional
data with few observations. We obtain generalization error bounds for the
gradient estimates and show that the convergence rate depends on the intrinsic
dimension of the manifold and not on the dimension of the ambient space. We
illustrate the efficacy of this approach empirically on simulated and real data
and compare the method to other dimension reduction procedures.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ206 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm