We investigate the electronic transport properties of a bilayer graphene
flake contacted by two monolayer nanoribbons. Such a finite-size bilayer flake
can be built by overlapping two semiinfinite ribbons or by depositing a
monolayer flake onto an infinite nanoribbon. These two structures have a
complementary behavior, that we study and analyze by means of a tight-binding
method and a continuum Dirac model. We have found that for certain energy
ranges and geometries, the conductance of these systems oscillates markedly
between zero and the maximum value of the conductance, allowing for the design
of electromechanical switches. Our understanding of the electronic transmission
through bilayer flakes may provide a way to measure the interlayer hopping in
bilayer graphene.Comment: 11 pages, 8 figure