It is of interest to study a wavelet system with a minimum number of
generators. It has been showed by X. Dai, D. R. Larson, and D. M. Speegle in
[11] that for any dΓd real-valued expansive matrix M, a homogeneous
orthonormal M-wavelet basis can be generated by a single wavelet function. On
the other hand, it has been demonstrated in [21] that nonhomogeneous wavelet
systems, though much less studied in the literature, play a fundamental role in
wavelet analysis and naturally link many aspects of wavelet analysis together.
In this paper, we are interested in nonhomogeneous wavelet systems in high
dimensions with a minimum number of generators. As we shall see in this paper,
a nonhomogeneous wavelet system naturally leads to a homogeneous wavelet system
with almost all properties preserved. We also show that a nonredundant
nonhomogeneous wavelet system is naturally connected to refinable structures
and has a fixed number of wavelet generators. Consequently, it is often
impossible for a nonhomogeneous orthonormal wavelet basis to have a single
wavelet generator. However, for redundant nonhomogeneous wavelet systems, we
show that for any dΓd real-valued expansive matrix M, we can always
construct a nonhomogeneous smooth tight M-wavelet frame in L2β(Rd) with a
single wavelet generator whose Fourier transform is a compactly supported
Cβ function. Moreover, such nonhomogeneous tight wavelet frames are
associated with filter banks and can be modified to achieve directionality in
high dimensions. Our analysis of nonhomogeneous wavelet systems employs a
notion of frequency-based nonhomogeneous wavelet systems in the distribution
space. Such a notion allows us to separate the perfect reconstruction property
of a wavelet system from its stability in function spaces