In calculating Green functions for interacting quantum systems numerically
one often has to resort to finite systems which introduces a finite size level
spacing. In order to describe the limit of system size going to infinity
correctly, one has to introduce an artificial broadening larger than the finite
size level discretization. In this work we compare various discretization
schemes for impurity problems, i.e. a small system coupled to leads. Starting
from a naive linear discretization we will then discuss the logarithmic
discretization of the Wilson NRG, compare it to damped boundary conditions and
arbitrary discretization in energy space. We then discuss the importance of
choosing the right single particle basis when calculating bulk spectral
functions. Finally we show the influence of damped boundary conditions on the
time evolution of wave packets leading to a NRG-tsunami.Comment: 17 pages, 17 figures, accepted for publication, RFC: Please inform me
about missing citation