research

Convergence of expansions in Schr\"odinger and Dirac eigenfunctions, with an application to the R-matrix theory

Abstract

Expansion of a wave function in a basis of eigenfunctions of a differential eigenvalue problem lies at the heart of the R-matrix methods for both the Schr\"odinger and Dirac particles. A central issue that should be carefully analyzed when functional series are applied is their convergence. In the present paper, we study the properties of the eigenfunction expansions appearing in nonrelativistic and relativistic RR-matrix theories. In particular, we confirm the findings of Rosenthal [J. Phys. G: Nucl. Phys. 13, 491 (1987)] and Szmytkowski and Hinze [J. Phys. B: At. Mol. Opt. Phys. 29, 761 (1996); J. Phys. A: Math. Gen. 29, 6125 (1996)] that in the most popular formulation of the R-matrix theory for Dirac particles, the functional series fails to converge to a claimed limit.Comment: Revised version, accepted for publication in Journal of Mathematical Physics, 21 pages, 1 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions