We present high-resolution continuum images of the W51e2 complex processed
from archival data of the Submillimeter Array (SMA) at 0.85 and 1.3 mm and the
Very Large Array (VLA) at 7 and 13 mm. We also made line images and profiles of
W51e2 for three hydrogen radio recombination lines (H26\alpha, H53\alpha, and
H66\alpha) and absorption of two molecular lines of HCN(4-3) and CO(2-1). At
least four distinct continuum components have been detected in the 3" region of
W51e2 from the SMA continuum images at 0.85 and 1.3 mm with resolutions of
0.3"x0.2" and 1.4"x0.7", respectively. The west component, W51e2-W, coincides
with the UC HII region reported from previous radio observations. The H26\alpha
line observation reveals an unresolved hyper-compact ionized core (<0.06" or
<310 AU) with a high electron temperature of 1.2x10^4 K, with corresponding
emission measure EM>7x10^{10} pc cm^{-6} and electron density N_e>7x10^6
cm^{-3}. The inferred Lyman continuum flux implies that the HII region W51e2-W
requires a newly formed massive star, an O8 star or a cluster of B-type stars,
to maintain the ionization. The east component, W51e2-E, has a total mass of
~140 M_{\sun} according to our SED analysis and a large infall rate of >
1.3x10^{-3} M_{\sun}yr^{-1} inferred from the absorption of HCN. W51e2-E
appears to be the accretion center in W51e2 and to host one or more growing
massive proto-stars. Located 2" northwest from W51e2-E, W51e2-NW is not
detected in the continuum emission at \lambda>=7 mm. Along with the maser
activities previously observed, our analysis suggests that W51e2-NW is at an
earlier phase of star formation. W51e2-N is located 2" north of W51e2-E and has
only been detected at 1.3 mm with a lower angular resolution (~1"), suggesting
that it is a primordial, massive gas clump in the W51e2 complex.Comment: 10 pages, 5 figures, 3 table, accepted for publication in Ap