The nature of a puzzling high temperature ferromagnetism of doped
mixed-valent vanadium oxide nanotubes reported earlier by Krusin-Elbaum et al.,
Nature 431 (2004) 672, has been addressed by static magnetization, muon spin
relaxation, nuclear magnetic and electron spin resonance spectroscopy
techniques. A precise control of the charge doping was achieved by
electrochemical Li intercalation. We find that it provides excess electrons,
thereby increasing the number of interacting magnetic vanadium sites, and, at a
certain doping level, yields a ferromagnetic-like response persisting up to
room temperature. Thus we confirm the surprising previous results on the
samples prepared by a completely different intercalation method. Moreover our
spectroscopic data provide first ample evidence for the bulk nature of the
effect. In particular, they enable a conclusion that the Li nucleates
superparamagnetic nanosize spin clusters around the intercalation site which
are responsible for the unusual high temperature ferromagnetism of vanadium
oxide nanotubes.Comment: with some amendments published in Europhysics Letters (EPL) 88 (2009)
57002; http://epljournal.edpsciences.or