The electronic transport properties of a metallic carbon nanotube with the
five-seven disclination pair characterized by a lattice distortion vector are
investigated. The influence of the disclination dipole includes induced
curvature and mixing of two sublattices. Both these factors are taken into
account via a self-consistent perturbation approach. The conductance and the
Fano factor are calculated within the transfer-matrix technique. PACS:
73.63.Fg, 72.80.Rj, 72.10.F