Femtosecond laser written optical waveguides in z-cut MgO:LiNbO3 crystal: Fabrication and optical damage investigation

Abstract

We report on the fabrication of the dual-line waveguides and cladding waveguide in z-cut MgO:LiNbO3 crystal by femtosecond laser inscription. Due to the diverse modification of refractive index along TE/TM polarization induced by femtosecond laser pulses, the two geometries exhibit different guiding performances: the dual-line waveguides only support extraordinary index polarization, whilst the depressed cladding waveguide supports guidance along both extraordinary and ordinary index polarizations. The measured optical damage of these waveguides at the wavelength of 532 nm is higher than that of the previously reported ion-implanted waveguides in Zr-doped LiNbO3. The propagation loss of depressed cladding waveguide is measured as low as 0.94 dB/cm at 632.8 nm wavelength. It is found that the optical damage threshold (∼105 W/cm2) of the dual-line waveguide is one order of magnitude higher than that of the cladding waveguide (∼104 W/cm2).The work was supported by the National Natural Science Foundation of China (Nos.11274203, and 11511130017) and Spanish Ministerio de Educación y Ciencia (FIS2013-44174-P)

    Similar works