The MAGIC experiment, a very large Imaging Air Cherenkov Telescope (IACT)
with sensitivity to low energy (E < 100 GeV) VHE gamma rays, has been operated
since 2004. It has been found that the gamma/hadron separation in IACTs becomes
much more difficult below 100 GeV [Albert et al 2008] A system of two large
telescopes may eventually be triggered by hadronic events containing Cherenkov
light from only one electromagnetic subcascade or two gamma subcascades, which
are products of the single pi^0 decay. This is a possible reason for the
deterioration of the experiment's sensitivity below 100 GeV. In this paper a
system of two MAGIC telescopes working in stereoscopic mode is studied using
Monte Carlo simulations. The detected images have similar shapes to that of
primary gamma-rays and they have small sizes (mainly below 400 photoelectrons
(p.e.)) which correspond to an energy of primary gamma-rays below 100 GeV. The
background from single or two electromagnetic subcascdes is concentrated at
energies below 200 GeV. Finally the number of background events is compared to
the number of VHE gamma-ray excess events from the Crab Nebula. The
investigated background survives simple cuts for sizes below 250 p.e. and thus
the experiment's sensitivity deteriorates at lower energies.Comment: 15 pages, 7 figures, published in Journ.of Phys.