In this work we discuss the zero temperature limit of a "p-wave" holographic
superconductor. The bulk description consists of a non-Abelian SU(2) gauge
fields minimally coupled to gravity. We numerically construct the zero
temperature solution which is the gravity dual of the superconducting ground
state of the "p-wave" holographic superconductors. The solution is a smooth
soliton with zero horizon size and shows an emergent conformal symmetry in the
IR. We found the expected superconducting behavior. Using the near horizon
analysis we show that the system has a "hard gap" for the relevant gauge field
fluctuations. At zero temperature the real part of the conductivity is zero for
an excitation frequency less than the gap frequency. This is in contrast with
what has been observed in similar scalar- gravity-gauge systems (holographic
superconductors). We also discuss the low but finite temperature behavior of
our solution.Comment: 9 pages, latex, 6 figure