In regression analysis, we employ contour projection (CP) to develop a new
dimension reduction theory. Accordingly, we introduce the notions of the
central contour subspace and generalized contour subspace. We show that both of
their structural dimensions are no larger than that of the central subspace
Cook [Regression Graphics (1998b) Wiley]. Furthermore, we employ CP-sliced
inverse regression, CP-sliced average variance estimation and CP-directional
regression to estimate the generalized contour subspace, and we subsequently
obtain their theoretical properties. Monte Carlo studies demonstrate that the
three CP-based dimension reduction methods outperform their corresponding
non-CP approaches when the predictors have heavy-tailed elliptical
distributions. An empirical example is also presented to illustrate the
usefulness of the CP method.Comment: Published in at http://dx.doi.org/10.1214/08-AOS679 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org