research

Quantum dynamics of attractive versus repulsive bosonic Josephson junctions: Bose-Hubbard and full-Hamiltonian results

Abstract

The quantum dynamics of one-dimensional bosonic Josephson junctions with attractive and repulsive interparticle interactions is studied using the Bose-Hubbard model and by numerically-exact computations of the full many-body Hamiltonian. A symmetry present in the Bose-Hubbard Hamiltonian dictates an equivalence between the evolution in time of attractive and repulsive Josephson junctions with attractive and repulsive interactions of equal magnitude. The full many-body Hamiltonian does not possess this symmetry and consequently the dynamics of the attractive and repulsive junctions are different.Comment: 9 pages, 2 figure

    Similar works