Proceedings of the 2007 Georgia Water Resources Conference, March 27-29, 2007, Athens, Georgia.Southeastern Natural Sciences Academy has initiated a two year comprehensive study to assess the upstream impacts on water quality in the Savannah River with emphasis on the Augusta urban corridor. One of the driving forces of the study is characterization of the upstream contribution of oxygen demanding substances to the Savannah Harbor. The ongoing study began in January 2006 and encompasses the physical, chemical, and biological domains of limnology. We have employed both Eulerian and Lagrangian approaches through continuous collection of data from static multiparameter probe stations and through flow based chemistry sampling events, respectively, with stations spanning from River Mile 148 (near Plant Vogtle) to River Mile 215 (above Augusta, GA). This presentation represents a portion of the first 6 months of collected Eulerian and Lagrangian data. Preliminary Eulerian results showed that, on average, temperature and conductivity increased steadily from river mile 215 to river mile 148 with the highest variability for both parameters at the downstream station. The overall trend for pH showed no net change from River Mile 215 to 148 but pH increased by nearly 1 unit at River Mile 202 and was most variable at that location. The overall trend for dissolved oxygen showed a net loss of ~0.5 mg O2/L from River Mile 215 to 148 but increased by an average of 1.5mg O2/L at River Mile 202 and remained elevated through River Mile 185. Lagrangian sampling results for the May sampling event showed that increases in conductivity from River Mile 215 to 148 mostly resulted from downstream increases in sodium, alkalinity (as CO3), sulfate, chloride, potassium, calcium, and iron. Total organic carbon, almost entirely in the dissolved phase, increased from River Mile 215 to 148. This increase was equivalent to ~700 kg C added to the river over that reach, none of which was characterized as a biologically oxygen demanding substance (BOD5) but may have been characterized as an oxygen demanding substance under harsher conditions (COD).Sponsored and Organized by: U.S. Geological Survey, Georgia Department of Natural Resources, Natural Resources Conservation Service, The University of Georgia, Georgia State University, Georgia Institute of TechnologyThis book was published by the Institute of Ecology, The University of Georgia, Athens, Georgia 30602-2202. The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of The University of Georgia, the U.S. Geological Survey, the Georgia Water Research Institute as authorized by the Water Resources Research Act of 1990 (P.L. 101-397) or the other conference sponsors