We apply the empirical method built for z=0 in the previous work of Wang et
al. to a higher redshift, to link galaxy stellar mass directly with its hosting
dark matter halo mass at z~0.8. The relation of the galaxy stellar mass and the
host halo mass M_infall is constrained by fitting both the stellar mass
function and the correlation functions at different stellar mass intervals of
the VVDS observation, where M_infall is the mass of the hosting halo at the
time when the galaxy was last the central galaxy. We find that for low mass
haloes, their residing central galaxies are less massive at high redshift than
those at low redshift. For high mass haloes, central galaxies in these haloes
at high redshift are a bit more massive than the galaxies at low redshift.
Satellite galaxies are less massive at earlier times, for any given mass of
hosting haloes. Fitting both the SDSS and VVDS observations simultaneously, we
also propose a unified model of the M_stars-M_infall relation, which describes
the evolution of central galaxy mass as a function of time. The stellar mass of
a satellite galaxy is determined by the same M_stars-M_infall relation of
central galaxies at the time when the galaxy is accreted. With these models, we
study the amount of galaxy stellar mass increased from z~0.8 to the present day
through galaxy mergers and star formation. Low mass galaxies gain their stellar
masses from z~0.8 to z=0 mainly through star formation. For galaxies of higher
mass, the increase of stellar mass solely through mergers from z=0.8 can make
the massive galaxies a factor ~2 larger than observed at z=0. We can also
predict stellar mass functions of redshifts up to z~3, and the results are
consistent with the latest observations.Comment: 12 pages, 10 figures, accepted for publication in MNRA