We say that a digraph is essentially cyclic if its Laplacian spectrum is not
completely real. The essential cyclicity implies the presence of directed
cycles, but not vice versa. The problem of characterizing essential cyclicity
in terms of graph topology is difficult and yet unsolved. Its solution is
important for some applications of graph theory, including that in
decentralized control. In the present paper, this problem is solved with
respect to the class of digraphs with ring structure, which models some typical
communication networks. It is shown that the digraphs in this class are
essentially cyclic, except for certain specified digraphs. The main technical
tool we employ is the Chebyshev polynomials of the second kind. A by-product of
this study is a theorem on the zeros of polynomials that differ by one from the
products of Chebyshev polynomials of the second kind. We also consider the
problem of essential cyclicity for weighted digraphs and enumerate the spanning
trees in some digraphs with ring structure.Comment: 19 pages, 8 figures, Advances in Applied Mathematics: accepted for
publication (2010) http://dx.doi.org/10.1016/j.aam.2010.01.00