The buckling and postbuckling behavior of composite struts under uniaxial compression is investigated. A geometrically nonlinear model comprising only four generalized coordinates is applied to multi-layered struts built up of transversally isotropic unidirectional layers. Laminates with a cross-ply layup are investigated. By minimizing the total potential energy of the system, equilibrium paths and critical buckling loads for varying lengths and depths of delamination are determined. Thus, the response of the system in the postbuckling range is analyzed and areas of stable and unstable behavior are determined. The outcome of the work provides detailed information about the influence of delaminations on the buckling behavior of composite struts