We review studies of entanglement entropy in systems with quenched
randomness, concentrating on universal behavior at strongly random quantum
critical points. The disorder-averaged entanglement entropy provides insight
into the quantum criticality of these systems and an understanding of their
relationship to non-random ("pure") quantum criticality. The entanglement near
many such critical points in one dimension shows a logarithmic divergence in
subsystem size, similar to that in the pure case but with a different universal
coefficient. Such universal coefficients are examples of universal critical
amplitudes in a random system. Possible measurements are reviewed along with
the one-particle entanglement scaling at certain Anderson localization
transitions. We also comment briefly on higher dimensions and challenges for
the future.Comment: Review article for the special issue "Entanglement entropy in
extended systems" in J. Phys.