research

Nonnormal approximation by Stein's method of exchangeable pairs with application to the Curie--Weiss model

Abstract

Let (W,W′)(W,W') be an exchangeable pair. Assume that E(W−W′∣W)=g(W)+r(W),E(W-W'|W)=g(W)+r(W), where g(W)g(W) is a dominated term and r(W)r(W) is negligible. Let G(t)=∫0tg(s) dsG(t)=\int_0^tg(s)\,ds and define p(t)=c1e−c0G(t)p(t)=c_1e^{-c_0G(t)}, where c0c_0 is a properly chosen constant and c1=1/∫−∞∞e−c0G(t) dtc_1=1/\int_{-\infty}^{\infty}e^{-c_0G(t)}\,dt. Let YY be a random variable with the probability density function pp. It is proved that WW converges to YY in distribution when the conditional second moment of (W−W′)(W-W') given WW satisfies a law of large numbers. A Berry-Esseen type bound is also given. We use this technique to obtain a Berry-Esseen error bound of order 1/n1/\sqrt{n} in the noncentral limit theorem for the magnetization in the Curie-Weiss ferromagnet at the critical temperature. Exponential approximation with application to the spectrum of the Bernoulli-Laplace Markov chain is also discussed.Comment: Published in at http://dx.doi.org/10.1214/10-AAP712 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works