The influence of chemistry inhomogeneity on microstructure development and residual stress


The chemistry distribution is of importance in the welding process. By varying the chemical composition, the evolution of microstructure and the residual stress change correspondingly. To examine the effect of chemistry, a three-dimensional metallo-thermo-mechanical model is created. The model is established according to a bead-on-plate welding experiment. Samples of S700 steel are manufactured by gas metal arc welding (GMAW). In total, three welds with three heat inputs were conducted so that different chemistries are obtained. The final weld geometry and the uniform chemistry in the fusion zone (FZ) are predicted by the software SimWeld. The parameters in the double ellipsoidal heat source are also calibrated by SimWeld. An inhomogeneous chemistry field is created using the data predicted by SimWeld and the chemical composition of base material (BM), and is further imported to the coupled model by writing user subroutine in ABAQUS. The metallurgical algorithm is implemented in the same way for calculating the phase volume fraction using both the homogeneously and the inhomogeneously distributed chemistry fields. After the temperature and microstructure are determined, the mechanical analysis is conducted using linearly interpolated material properties. Finally, the results of microstructure distribution and the residual stress predicted for homogeneous and inhomogeneous field are compared to clarify the influence of chemical composition

    Similar works