We study the origin of interface states in carbon nanotube intramolecular
junctions between achiral tubes. By applying the Born-von Karman boundary
condition to an interface between armchair- and zigzag-terminated graphene
layers, we are able to explain their number and energies. We show that these
interface states, costumarily attributed to the presence of topological
defects, are actually related to zigzag edge states, as those of graphene
zigzag nanoribbons. Spatial localization of interface states is seen to vary
greatly, and may extend appreciably into either side of the junction. Our
results give an alternative explanation to the unusual decay length measured
for interface states of semiconductor nanotube junctions, and could be further
tested by local probe spectroscopies