Switching of electrical current by spin precession in the first Landau level of an inverted-gap semiconductor


We show how the quantum Hall effect in an inverted-gap semiconductor (with electron- and hole-like states at the conduction- and valence-band edges interchanged) can be used to inject, precess, and detect the electron spin along a one-dimensional pathway. The restriction of the electron motion to a single spatial dimension ensures that all electrons experience the same amount of precession in a parallel magnetic field, so that the full electrical current can be switched on and off. As an example, we calculate the magnetoconductance of a p-n interface in a HgTe quantum well and show how it can be used to measure the spin precession due to bulk inversion asymmetry.Comment: 5 pages, 4 figures, extended versio

    Similar works

    Full text


    Available Versions

    Last time updated on 02/01/2020