research

A "Cellular Neuronal" Approach to Optimization Problems

Abstract

The Hopfield-Tank (1985) recurrent neural network architecture for the Traveling Salesman Problem is generalized to a fully interconnected "cellular" neural network of regular oscillators. Tours are defined by synchronization patterns, allowing the simultaneous representation of all cyclic permutations of a given tour. The network converges to local optima some of which correspond to shortest-distance tours, as can be shown analytically in a stationary phase approximation. Simulated annealing is required for global optimization, but the stochastic element might be replaced by chaotic intermittency in a further generalization of the architecture to a network of chaotic oscillators.Comment: -2nd revised version submitted to Chaos (original version submitted 6/07

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019