The Hopfield-Tank (1985) recurrent neural network architecture for the
Traveling Salesman Problem is generalized to a fully interconnected "cellular"
neural network of regular oscillators. Tours are defined by synchronization
patterns, allowing the simultaneous representation of all cyclic permutations
of a given tour. The network converges to local optima some of which correspond
to shortest-distance tours, as can be shown analytically in a stationary phase
approximation. Simulated annealing is required for global optimization, but the
stochastic element might be replaced by chaotic intermittency in a further
generalization of the architecture to a network of chaotic oscillators.Comment: -2nd revised version submitted to Chaos (original version submitted
6/07