CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Structure of the lithosphere beneath the Barotse Basin, western Zambia, from magnetotelluric data.
Authors
Mohamed Abdelsalam
Estella Atekwana
+7 more
F Chilongola
James R. Elsenbeck
Rob L. Evans
Alan Jones
Daniel Mutamina
Emily Sarafian
Jian Zhu
Publication date
30 January 2019
Publisher
'American Geophysical Union (AGU)'
Doi
Abstract
Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Tectonics, 38(2), (2019):666-686. doi:10.1029/2018TC005246.A magnetotelluric survey in the Barotse Basin of western Zambia shows clear evidence for thinned lithosphere beneath an orogenic belt. The uppermost asthenosphere, at a depth of 60–70 km, is highly conductive, suggestive of the presence of a small amount of partial melt, despite the fact that there is no surface expression of volcanism in the region. Although the data support the presence of thicker cratonic lithosphere to the southeast of the basin, the lithospheric thickness is not well resolved and models show variations ranging from ~80 to 150 km in this region. Similarly variable is the conductivity of the mantle beneath the basin and immediately beneath the cratonic lithosphere to the southeast, although the conductivity is required to be elevated compared to normal lithospheric mantle. In a general sense, two classes of model are compatible with the magnetotelluric data: one with a moderately conductive mantle and one with more elevated conductivities. This latter class would be consistent with the impingement of a stringer of plume‐fed melt beneath the cratonic lithosphere, with the melt migrating upslope to thermally erode lithosphere beneath the orogenic belt that is overlain by the Barotse Basin. Such processes are potentially important for intraplate volcanism and also for development or propagation of rifting as lithosphere is thinned and weakened by melt. Both models show clear evidence for thinning of the lithosphere beneath the orogenic belt, consistent with elevated heat flow data in the region.Funding for MT acquisition and analysis was provided by the National Science Foundation grant EAR‐1010432 through the Continental Dynamics Program. The data used in this study are available for download at the IRIS Data Management Center through the DOI links cited in Jones et al. (2003–2008; https://doi.org/10.17611/DP/EMTF/SAMTEX) and Evans et al. (2012; https://doi.org/10.17611/DP/EMTF/PRIDE/ZAM). We would like to thank the field crew from the Geological Survey Department, Zambia, for their assistance in collecting data. Matthew Chamberlain, David Margolius, and Colin Skinner, formerly of Northeastern University, are also thanked for their field assistance. Data are available from the corresponding author pending their submission to the IRIS DMC repository at which point they will be publically available. This is Oklahoma State University, Boone Pickens School of Geology contribution number 2019‐99.2019-07-3
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 07/08/2019
DSpace@MIT
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.mit.edu:1721.1/1403...
Last time updated on 28/07/2022