We report new results from our effort to identify obscured Wolf-Rayet stars
in the Galaxy. Candidates were selected by their near-infrared (2MASS) and
mid-infrared (Spitzer/GLIMPSE) color excesses, which are consistent with
free-free emission from ionized stellar winds and thermal excess from hot dust.
We have confirmed 12 new Wolf-Rayet stars in the Galactic disk, including 9 of
the nitrogen subtype (WN), and 3 of the carbon subtype (WC); this raises the
total number of Wolf-Rayet stars discovered with our approach to 27. We
classify one of the new stars as a possible dust-producing WC9d+OBI
colliding-wind binary, as evidenced by an infrared excess resembling that of
known WC9d stars, the detection of OBI features superimposed on the WC9
spectrum, and hard X-ray emission detected by XMM-Newton. A WC8 star in our
sample appears to be a member of the stellar cluster Danks 1, in contrast to
the rest of the confirmed Wolf-Rayet stars that generally do not appear to
reside within dense stellar clusters. Either the majority of the stars are
runaways from clusters, or they formed in relative isolation. We briefly
discuss prospects for the expansion and improvement of the search for
Wolf-Rayet stars throughout the Milky Way Galaxy.Comment: Submitted to PASP March 12, 2009; Accepted on May 14, 200