research

Cavity-assisted squeezing of a mechanical oscillator

Abstract

We investigate the creation of squeezed states of a vibrating membrane or a movable mirror in an opto-mechanical system. An optical cavity is driven by squeezed light and couples via radiation pressure to the membrane/mirror, effectively providing a squeezed heat-bath for the mechanical oscillator. Under the conditions of laser cooling to the ground state, we find an efficient transfer of squeezing with roughly 60% of light squeezing conveyed to the membrane/mirror (on a dB scale). We determine the requirements on the carrier frequency and the bandwidth of squeezed light. Beyond the conditions of ground state cooling, we predict mechanical squashing to be observable in current systems.Comment: 7.1 pages, 3 figures, submitted to PR

    Similar works