research

Linear acceleration emission: 2 Power spectrum

Abstract

The theory of linear acceleration emission is developed for a large amplitude electrostatic wave in which all particles become highly relativistic in much less than a wave period. An Airy integral approximation is shown to apply near the phases where the electric field passes through zero and the Lorentz factors of all particles have their maxima. The emissivity is derived for an individual particle and is integrated over frequency and solid angle to find the power radiated per particle. The result is different from that implied by the generalized Larmor formula which, we argue, is not valid in this case. We also discuss a mathematical inconsistency that arises when one evaluates the power spectrum by integrating the emissivity over solid angle. The correct power spectrum increases as the 4/3rd power of the frequency at low frequencies, and falls off exponentially above a characteristic frequency. We discuss application of linear acceleration emission to the emission of high frequency photons in an oscillating model for pulsars. We conclude that it cannot account for gamma-ray emission, but can play a role in secondary pair creation.Comment: 25 pages; Accepted for publication in Ap

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020